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ABSTRACT

Recently, a generalization of the Hilbert transformer, the
fractional Hilbert transformer, was defined and developed.
In this paper, we propose a design of the allpass filter to re-
alize the fractional Hilbert transformer based on the maxi-
mally flat approximation to the desired phase response. The
coefficients are solved analytically for the traditional Hilbert
transformer which is a special case of the fractional Hilbert
transformer. Based on the closed-form coefficients, we show
that the maximally flat allpass Hilbert transformers are sta-
ble. Design examples indicate that the proposed filters ex-
hibit good approximation to the desired frequency response.

1. INTRODUCTION

Hilbert transform (HT) is a basic and important tool in sig-
nal processing. In a communication system, it is used for
single side-band modulation and then reduces the bandwidth
needed for transmission. HT is also used for edge detection
[1]. In[2], the HT is generalized into the fractional Hilbert
transform (FHT) and two alternative definitions are given.
One is a modification of the definition of HT and the fre-
quency response is expressed by

e—Jom/2

forw>0
Hypg(w) = { o dam/2

forw< @ - M
Note that this FHT can be regarded as an allpass (AP) fil-
ter with a suitable specification of phase response. Another
is implemented by using the above definition as well as
the fractional Fourier transform to achieve a two-parameter
FHT system. The discrete version of the FHT is proposed
in [3].

Both FIR and IIR filters are investigated to realize the
HT in extensive literature. In [4] and [5], the impulse re-
sponses of the FIR HTs are analytically solved in the max-
imally flat (MF) sense. A realization scheme based on de-
composing the transfer function of HT into allpass subfilters
is proposed in [6].

In this paper, the FHTs with MF phase response will
be designed. The filter coefficients are obtained by solv-
ing linear equations. For the HT, a special case of the FHT,
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the coefficients are solved analytically. We show that the
MF AP HTs are always stable by applying the Enestrom-
Kakeya theorem to the closed-form coefficients. The stabil-
ity problem for the general FHTs is illustrated by numeri-
cally showing that the poles lie in the unit circle |z| < 1 for
a certain a.

2. MAXIMALLY FLAT DESIGN OF AP FHT

The transfer function H (z) of an Nth-order AP filter can be
represented by

21
Z_NAIQ(Z)) )

N
H(z) = z_N——-———Z"=O an 2" =
Zg=0 an z "

where the coefficients a,,’s are real. Without loss of gener-
ality, we let agp = 1 to prevent from the null solution for a,.
The phase response 8(w) of H(e’*) can be expressed by
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Given the desired frequency response 84(w), we want to
find a set of coefficients a,,’s so that the phase error 6. (w) =
fa(w) —0(w) is minimized. By expressing the desired phase
response as §4(w) = —Nw + (w), the phase error 6. (w)
can be represented by
N .
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However, it is difficult to minimize the above error function
due to its nonlinearity. Therefore, we minimize an equiva-
lent error function e(w) which is defined by
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It is easy to show that e(w) = n{w)/d(w) where

N 1.
n(w) = ;an sin [56(0.)) - nw] (6)
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Finally, the numerator function n(w) is the target error func-
tion to be minimized. _
Let 8(w) in Eq.(6) be the ideal phase response expressed

) —tam, for0<w<m
O(w) = (®)

%onr, for — 7 <w<O0

as

where « is the desired fractional parameter. Putting the
phase response 8(w) into Eq.(6), we can obtain the follow-
ing equations

N

n(w) = Z an sin (nw + iaw) , forw > 0; ©)

n=0

N
w) = Zan sin (—nw + %aw) , forw < 0. (10)

If n{w) is minimized at w = wp in the MF sense, it has to
satisfy the MF conditions of d*n(w)/dw* = 0 atw = Fws.
Because of the odd symmetry between Eq.(9) and (10), we
can drop the case of wo > 0. Let d*n(w)/dw* = 0 at
w = wy where n{w) is expressed by Eq.(9). We have

N
Z ann®sin | nwo + -1-k7r + laﬂ' = —§ sin lom'
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where dy, is defined by

e = 1, fork =0;
k=13 0, otherwise.

The coefficients a,,’s can be solved by the N linear equa-
tions expressed in Eq.(11) fork = 0,1,..., N — 1. In this
paper, we choose the frequency wo = %?r to achieve the best
approximation on the middle frequency range.

3. EXPLICIT SOLUTION FOR HILBERT
TRANSFORMER

In the previous section, we show that the coefficients of
the AP FHTs can be obtained by solving Eq.(11). The re-
sulting FHTs exhibit the best approximation at w = %w
in the MF sense. However, these linear equations are ill-
conditioned. For example, the reciprocal of the condition
number is approximated to 1.281817 x 10726 for the equa-
tions of Eq.(11) with N = 20 and @ = % solved by MAT -
LAB or similar software. That is, we can not solve Eq.(11)
reliably for large V. The problem of numerical instability
may be avoided by solving the equations analytically.

In this section, we will analytically solve the coefficients
of MF AP FHTs for o = 1 in Eq.(11). That is, we will find
the closed-form solution of the AP MF HTs. Lettinga =1

in Eq.(11), we can express the equations as

1
Zann (cos —nm + sin 2n7r) = —&, foreven k,

Z ann <cos ~nm — sin ;mr) =0, for odd k.(12)

The above equation can be solved by the ratio of two Van-
dermonde’s determinants. If IV is even, after some algebraic
manipulations, we obtain the closed form of a,,’s of
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form =20,1,..., M, and
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form = 0,1,...,M — 1 where M = N/2, (M) is the

binomial coefficient, and (z) ,, is the Pochhammer’s symbol
defined by (z)o = land (), =z X (x+ 1) x--- x (z +
n — 1). On the other hand, if N = 2M + 1, we have

(2)m (M) 1)

a = —Q =
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form = 0,1,..., M. Based on Eq.(15), it is obvious that

1—2z"1isa factor of the denominators A(z) of the odd-order

MF AP HTs. Accordingly, we have the following property:

Property 1 If N is an odd number and M = (N — 1)/2,
the denominator A(z) of an Nth-order MF AP HT can be
factored as A(z) = (1 — z271) A(2?) where

M
s m (D (M
= mX::Oamz yand G, = (—Aﬁg—)—;—<m) (16)

Remark. In[7] the authors analytically solved the coeffi-
cients of the MF AP orthonormal symmetric wavelet filters.
These coefficients can be expressed by

m(—M+ K/4)m (M)

bm = (1) 1+ K/4)m

an
where K must be odd to satisfy the orthonormal condition.
The odd-order MF AP HTs with coefficients expressed in
Property 1 can be related with the MF AP orthonormal sym-
metric wavelet filters by G, = (—1)™b,, for K = 4M + 2.
Based on Eq.(1), one may synthesize the Nth-order FHTs

by

H,(2) = (cos %aw) z"N + (sin %a'/r) Hi(z) (18)
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where H;(z) is an Nth-order HT. That is, high order FHTs
with flat phase response can be synthesized by the MF AP
HTs without solving the ill-conditioned Eq.(11). We will
prove that these FHTs are always stable by showing that the
MF AP HTs are stable. However, the FHTs synthesized by
AP HTs are not allpass filters. It is obvious that the FHT
synthesized by Eq.(18) has the magnitude of cos %aﬂ' +
sin Jar atw = 0if Hy(2) is the MF AP HT. This DC value
reaches its largest value of /2 > 1 when a = 1/2. Hence,
a scaling factor is necessary to reduce this peak magnitude.
A modified FHTs is proposed by H.,(2) = kH,(z) where
k = (cos fam + sin +am) ™12 = (1 + sinar)~1/4,

4. STABILITY PROBLEM

To test the stability, one can apply the Schur-Cohn crite-
rion or the more efficient Jury-Marden criterion {9] on the
proposed AP filters. Thiran show that the MF AP frac-
tional delay filters were stable by applying the Schur-Cohn
criterion[8]. However, there exists other stability criteria
suitable for the proposed filters without evaluating the Schur-
Cohen determinants or establishing the Jury-Marden arrays.
In this paper, we will apply the Enestrom-Kakeya theorem
[10] which is stated as

Theorem 1 Let p(z) = ZQI:o anzVN ", N > 1, be a poly-
nomial with a,, > 0 for 0 <n < N. Let v, = any1/an for
0 < n < N. Then all the zeros of p(x) are contained in the
annulus

min r, < |z| < max 7.
n n

Based on the Enestrom-Kakeya theorem, we have the
following properties about the stability of the MF AP HTs.

Property 2 All the poles of the MF AP HTs of even order
are contained in the unit circle |z] < 1.

Proof: Let B(z) = A(—z) where A(z) is the denominator
of an even-order MF AP HT with coefficients expressed in
Egs.(13) and (14). Then all the coefficients of B(z) satisfy

A2m+1 2M —2m
r = - = <1
m Gam  2M +2m + 1
2m ~1
ooy = ——2m_ _IMT D 4
Aom—1 2m

According to the Enestrom-Kakeya theorem, we conclude
that all the zeros of B(z) are contained in the unit circle
[z} < 1 since the ratios of successive coefficients are less
than unity. Then all the zeros of A(z) are also in |z} < 1.

Property 3 The MF AP HT of odd order has a pole at z =
1. All the other poles are contained in the unit circle |z| < 1.

Proof: By applying the Enestrdm-Kakeya theorem to /i(z)
in Property 1, we have this property.

We can not conclude that the general MF AP FHTs are
stable. However, by numerically computing the poles of the
AP FHTs, the largest moduli of these poles are less than
unity within a range of interest. Fig. 1 shows the plot of
largest moduli for2< N < 16and0 < a < 1.

5. DESIGN RESULTS

Fig. 2 and 3 show the design results of the MF AP FHTs .
Fig. 2 is the plot of the phase responses of the 10th- and 11-
order MF AP FHTs for & = 0.1,0.3,0.5,0.7 and 0.9. The
phase responses are normalized by 2{arg[H (w)] + Nw}/=.
The purpose of the normalization is to find out the approx-
imation to the desired ce. There are bumps around w = 0
for odd-order filters. Figs. 3 and 4 show the magnitude and
normalized phase responses for the FHTs synthesized by
the 30th-order MF AP HT. We can not obtain these FHTs
by solving Eq.(11) due to numerical instability. The phase
responses shown in Fig. 3 exhibit good approximation to
the desired phase responses within the middle frequency
band. However, the magnitude responses can not remain
unity over the whole band. Fig. 4 shows the magnitude re-
sponses which are scaled according the discussion in Sec-
tion 3.

6. CONCLUSIONS

The MF AP FHTs are proposed in this paper. The coeffi-
cients of the FHTs are obtained by solving a set of linear
equations. For the special cases of the HTs, the coefficients
are solved analytically. Based on the closed-form expres-
sions, we prove that the MF AP HTs are stable according
to the Enestrom-Kakeya theorem. The stability of the gen-
eral MF AP FHTs is investigated by numerically calculating
their poles for a certain range of @ and N. The largest pole
in modulus is less than unity for N < 16. However, since
the general FHTs can be synthesized by the HTs, we show
that IIR FHTs with flat phase response can be implemented
by the MF AP HTs.

7. REFERENCES

[1] K. Kohlmann, “Comer detection in natural images
based on the 2-D Hilbert transform,” Signal Process-
ing, vol. 48, pp. 225-234, 1996.

[2] A. W. Lohmann, D. Mendlovic and Z. Zalevsky,
“Fractional Hilbert transform,” Optics Letters, vol. 21,
no. 4, pp. 281-283, February 1996.

V-703



[3] S.-C. Pei and M.-H Yeh, “Discrete fractional Hilbert
transform,” Proc. IEEE Int. Symposium on Circuits
and Systems, Monterey, California, May 1998.

[4] T. Cooklev and A. Nishihara, “Maximally flat FIR
Hilbert transformer,” Int. J. of Circuit Theory Appli-
cat., vol. 21, pp. 353-570, 1993.

[5] J. Le Bihan, “Coefficients of FIR digital differentia-
tors and Hilbert transformers for midband frequen-
cies,” IEEE Trans. Circuits and Systems-II, vol. 43, no.
3, pp. 272-274, March 1996.

[6] H. Johansson and L. Wanhammar, “Digital Hilbert
transformers composed of identical allpass subfilters,”
‘Proc. IEEE Int. Symposium on Circuits and Systems,
Monterey, California, May 1998.

[7] X. Zhang, T. Muguruma, and T. Yoshikawa, “Design
of orthonormal symmetric wavelet filters using real
allpass filters,” Signal Processing, vol. 80, pp. 1551-
1559, 2000.

[8] Jean-Pierre Thiran, “Recursive digital filters with
maximally flat group delay,” IEEE Trans. Circuit The-
ory, vol. CT-18, no. 6, pp. 659-664, November 1971.

[9] A. Antoniou, Digital Filters: Analysis, Design, and
Applications, 2nd ed., McGraw-Hill, 1993.

[10] N. Anderson, E. B. Saff, and R. S. Varga, “On the En-
estrom-Kakeya theorem and its sharpness,” Linear Al-
gebra and its Applications, vol. 28, pp 5-16, 1979.

Modulus

2 ; 6 é 1.0 1‘2 1I4 16
Order
Fig. 1. The plot of the poles of largest modulus for 0 <

a < land 2 < N < 16. These moduli are less than unity
indicate the corresponding MF AP FHTs are stable.
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Fig. 2. The plot of normalized phase responses for N = 10
and 11.
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Fig. 3. The plot of normalized phase responses of 30th-
order FHTs synthesized by the 30th-order MF AP HT.
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Fig. 4. The plot of magnitude responses of 30th-order FHTs
synthesized by the 30th-order MF AP HT.
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